"Сила" Кориолиса в Природе и технике - фейк? или Направление вихревых спиралей. Ускорение и сила Кориолиса – что это? Кориолиса скорость составляющие

На околонаучных форумах с удивительной периодичностью разгораются нешуточные дебаты о том, что же такое сила Кориолиса и каковы ее видимые проявления. Несмотря на почтенный возраст открытия - явление было описано еще в 1833 году - некоторые люди иногда путаются в выводах. Например, так как чаще всего сила Кориолиса связывается с явлениями в океанах и атмосфере, то на просторах Интернета можно встретить утверждение, согласно которому подмыв берегов рек происходит с правой стороны, а в Южном размывающее действие воды оказывается преимущественно на левые берега. Одни утверждают, что данное явление создает сила Кориолиса. Их оппоненты объясняют все иначе: из-за вращения планеты твердая поверхность смещается немного быстрее (менее инерционна), чем масса воды и из-за этой разницы происходим подмыв. Хотя в какой-то части происходящих в океане процессов, действительно, «виновна» сила Кориолиса. Сложность в определении ее из комплекса других воздействий. Кориолисовое проявление, как и взаимодействия, потенциально.

Давайте определимся, что же это за сила и почему представляет такой интерес. Так как нашу планету можно считать неинерциальной системой (движется и вращается), то любой процесс, рассматриваемый относительно ее, должен учитывать инерцию. Обычно для пояснения этого используют особый маятник длиной свыше 50 м и массой в десятки килограмм. Кроме того, относительно неподвижного наблюдателя, стоящего на полу, плоскость, в которой маятник качается, вращается по окружности. Если значение скорости вращения планеты окажется выше, чем маятника, то его условная плоскость будет смещаться в сторону Северного полушария, вращаясь в обратную, относительно хода часов, сторону. Верно и обратное: повышение периода выше, чем скорость вращения Земли, приведет к смещению в направлении хода часовых стрелок. Так происходит из-за того, что вращение планеты создает в системе маятника поворотное ускорение, вектор которого смещает плоскость качения.

Для объяснения, можно воспользоваться примером из жизни. Наверняка, каждый, будучи ребенком, катался на карусели, представляющей собой вращающийся с какой-то большой диск. Представим себе две точки на таком диске: одна вблизи центральной оси (А), а вторая - на ближнем к краю радиусе (Б). Если человек, находящийся в точке А, решит переместиться в точку Б, то, на первый взгляд, наиболее оптимальной будет прямая линия А-Б, фактически, являющаяся радиусом диска. Но с каждым шагом человека точка Б смещается, так как диск продолжает вращаться. В результате, если продолжать двигаться вдоль намеченной линии-радиуса, то при достижении радиуса точки Б, ее там уже не окажется из-за смещения. Если же человек будет корректировать свой путь в соответствии с действительным положением Б, то траектория представит собой кривую линию, волну, вершина которой будет направлена против направления вращения. Однако существует способ пройти от А к Б по прямой линии: для этого требуется увеличить скорость передвижения, сообщив телу (человеку) ускорение. С увеличением расстояния А-Б для сохранения необходимо все все больший импульс скорости. Отличие описываемой силы от центробежной в том, что направление последней совпадает с радиусом на вращающейся окружности.

Итак, на перемещение по вращающемуся объекту оказывает действие сила Кориолиса. Формула ее следующая:

F = 2*v*m*cosFi,

где m - масса двигающегося тела; v - скорость перемещения; cosFi - величина, учитывающая угол между направлением движения и осью вращения.

Или, в векторном представлении:

где а - ускорение кориолиса. Знак «-» возникает потому, что сила со стороны движущегося тела противоположна направленности.

Эффект от силы Кориолиса вступает в заметную силу когда производятся стрельба на очень дальние дистанции как представленная на картинке. Движение Земли вокруг своей оси двигает цель во время полета пули.

Когда вы находитесь на стрельбище, земля на которой вы стоите, кажется стабильной. Но на самом деле это большая сфера, летящая в космосе и одновременно вращающаяся по своей оси, с одним полным оборотом в 24 часа. Вращение земли может создавать проблемы для стрелков на сверхдальние дистанции. Во время продолжительного полета пули, вращение планеты вызывает наглядное отклонение цели от траектории пули при стрельбе на очень дальние дистанции. Это называется корреляционный эффект или эффект корреляции в баллистике.

Брайен Литц (Bryan Litz) из Прикладной Баллистики (Applied Ballistics) выпустил небольшое видео где он объясняет эффект силы Кориолиса. Брайан подмечает что этот эффект " очень незначителен. Стрелки любят возвышать его силу, так как он кажется очень таинственным. " В большинстве случаев при стрельбе до ~ 1000 м., сила Кориолиса не важна в учете. Если пользоваться Американской системой ввода поправок (1/4 MOA угловой минута = ~1" дюйм на 100 ярдов) на 1000 ярдов (914,4 м.) эффект можно будет скорректировать на прицеле одним щелчком (для большинства патронов). Даже после отметки в 1000 ярдов в условиях повышенного ветра, эффект силы Кориолиса может быть " потерян в общем шуме ". Но в очень благоприятных условиях стрельбы без ветра на дальние дистанции, Брайен утверждает что можно получить преимущество в точности используя баллистические решения с учетом корреляционного эффекта.

Браен продолжает: " Эффект силы Кориолиса...связан с вращение Земли. Вы по сути стреляете из одной точки в другую на вращающейся сфере, в инерционной системе координат. Последствия будут такие что если время полета пули будет достаточно продолжительным, пуля будет сносится от своей предполагаемой цели. Количество этого сноса очень мало - оно зависит от географической широты и направления стрельбы относительно планеты. "

Эффект силы Кориолиса очень трудно уловим. Со средним баллистическим коэффициентом и скоростью, у вас будет свободная дистанция до 1000 ярдов, до того как можно будет сделать поправку в один щелчок на прицеле. Брайан говорит: " эффект корреляции это НЕ то о чем следует думать при стрельбе по движущейся цели, это НЕ то о чем следует думать при стрельбе с сильным ветром, так как есть условия которые будут иметь более очевидное влияние, а эффект силы Кориолиса будет отвлекать вас от них. "

" Где действительно можно задуматься об использовании данного эффекта, использовать его на постоянной основе и он будет влиять на ваши показатели - это при стрельбе на сверхдальние дистанции по относительно малым целям в условиях малого ветра. Когда вы знаете скорость пули и баллистический коэффициент очень хорошо и есть безупречные условия, тогда вы заметите влияние силы Кориолиса. Вы получите больше отдачи в вашей деятельности, если будете учитывать эту силу только в вышеприведенных случаях. Но в большинстве случаев практической стрельбы на дальние дистанции, сила Кориолиса НЕ так важна. Что действительно важно это понять ваши приоритеты в стрельбе и учет их в процессе."

Сила Кориолиса

Своеобразие мира вращающихся систем не исчерпывается существованием радиальных сил тяжести. Познакомимся с еще одним интересным эффектом, теория которого была дана в 1835 году французом Кориолисом.

Поставим перед собой такой вопрос: как выглядит прямолинейное движение с точки зрения вращающейся лаборатории? План такой лаборатории изображен на рис. 26. Чертой, проходящей через центр, показана прямолинейная траектория какого-то тела. Мы рассматриваем тот случай, когда путь тела проходит через центр вращения нашей лаборатории. Диск, на котором размещена лаборатория, вращается равномерно; на рисунке показаны пять положений лаборатории по отношению к прямолинейной траектории. Так выглядит взаимное положение лаборатории и траектории тела через одну, две, три и т.д. секунды. Лаборатория, как вы видите, вращается против часовой стрелки, если смотреть на нее сверху.

На линии пути нанесены стрелки, соответствующие отрезкам, которые тело проходит за одну, две, три и т.д. секунды. За каждую секунду тело проходит одинаковый путь, так как речь идет о равномерном и прямолинейном движении (с точки зрения неподвижного наблюдателя).

Представьте себе, что движущееся тело – это свежевыкрашенный катящийся по диску шар. Какой след останется на диске? Наше построение дает ответ на этот вопрос. Отмеченные окончаниями стрелок точки с пяти рисунков перенесены на один чертеж. Остается соединить эти точки плавной кривой. Результат построения нас не удивит: прямолинейное и равномерное движение выглядит с точки зрения вращающегося наблюдателя криволинейным. Обращает на себя внимание такое правило: движущееся тело отклоняется на всем пути вправо по ходу движения. Предположим, что диск вращается по часовой стрелке, и предоставим читателю повторить построение. Оно покажет, что в этом случае движущееся тело с точки зрения вращающегося наблюдателя отклоняется влево по ходу движения.

Мы знаем, что во вращающихся системах появляется центробежная сила. Однако ее действие не может служить причиной искривления пути – ведь она направлена вдоль радиуса. Значит, во вращающихся системах кроме центробежной силы возникает еще дополнительная сила. Ее называют силой Кориолиса.

Почему же в предшествующих примерах мы не сталкивались с силой Кориолиса и превосходно обходились одной центробежной? Причина в том, что мы до сих пор не рассматривали движение тел с точки зрения вращающегося наблюдателя. А сила Кориолиса появляется только в этом случае. На тела, которые покоятся во вращающейся системе, действует лишь центробежная сила. Стол вращающейся лаборатории привинчен к полу – на него действует одна центробежная сила. А на мячик, который упал со стола и покатился по полу вращающейся лаборатории, кроме центробежной силы действует и сила Кориолиса.

От каких величин зависит значение силы Кориолиса? Его можно вычислить, но расчеты слишком сложны для того, чтобы приводить их здесь. Опишем поэтому лишь результат вычислений.

В отличие от центробежной силы, значение которой зависит от расстояния до оси вращения, сила Кориолиса не зависит от положения тела. Ее величина определяется скоростью движения тела, и при этом не только величиной скорости, но и ее направлением по отношению к оси вращения. Если тело движется вдоль оси вращения, то сила Кориолиса равна нулю. Чем больше угол между вектором скорости и осью вращения, тем больше сила Кориолиса; максимальное значение сила приме?т при движении тела под прямым углом к оси.

Как мы знаем, вектор скорости всегда можно разложить на какие-либо составляющие и рассмотреть раздельно два возникающих движения, в которых одновременно участвует тело.

Если разложить скорость тела на составляющие

– параллельную и перпендикулярную к оси вращения, то первое движение не будет подвержено действию силы Кориолиса. Значение силы Кориолиса F k определится составляющей скорости

Расчеты приводят к формуле

Здесь m – масса тела, а n – число оборотов, совершаемых вращающейся системой за единицу времени. Как видно из формулы, сила Кориолиса тем больше, чем быстрее вращается система и чем быстрее движется тело.

Расчеты устанавливают и направление силы Кориолиса. Эта сила всегда перпендикулярна к оси вращения и к направлению движения. При этом, как уже говорилось выше, сила направлена вправо по ходу движения в системе, вращающейся против часовой стрелки.

Действием силы Кориолиса объясняются многие интересные явления, происходящие на Земле. Земля – шар, а не диск. Поэтому проявления сил Кориолиса сложнее.

Эти силы будут сказываться как на движении вдоль земной поверхности, так и при падении тел на Землю.

Падает ли тело строго по вертикали? Не вполне. Только на полюсе тело падает строго по вертикали. Направление движения и ось вращения Земли совпадают, поэтому сила Кориолиса отсутствует. Иначе обстоит дело на экваторе; здесь направление движения составляет прямой угол с земной осью. Если смотреть со стороны северного полюса, то вращение Земли представится нам против часовой стрелки. Значит, свободно падающее тело должно отклониться вправо по ходу движения, т.е. на восток. Величина восточного отклонения, наибольшая на экваторе, уменьшается до нуля с приближением к полюсам.

Подсчитаем величину отклонения на экваторе. Так как свободно падающее тело движется равномерно-ускоренно, то сила Кориолиса растет по мере приближения к земле. Поэтому мы ограничимся примерным подсчетом. Если тело падает с высоты, скажем, 80 м, то падение продолжается около 4 с (по формуле t = sqrt(2h /g )). Средняя скорость при падении будет равна 20 м/с.

Это значение скорости мы и подставим в формулу кориолисова ускорения 4?nv . Значение n = 1 оборот за 24 часа переведем в число оборотов в секунду. В 24 часах содержится 24·3600 секунд, значит, n равно 1/86400 об/с и, следовательно, ускорение, которое создает сила Кориолиса, равно?/1080 м/с 2 . Путь, пройденный с таким ускорением за 4 с, равен (1/2)·(?/1080)·4 2 = 2,3 см. Это и есть величина восточного отклонения для нашего примера. Точный расчет, учитывающий неравномерность падения, дает несколько иную цифру – 3,1 см.

Если отклонение тела при свободном падении максимально на экваторе и равно нулю на полюсах, то обратную картину мы будем наблюдать в случае отклонения под действием кориолисовой силы тела, движущегося в горизонтальной плоскости.

Горизонтальная площадка на северном или южном полюсах ничем не отличается от вращающегося диска, с которого мы начали изучение силы Кориолиса. Тело, движущееся по такой площадке, будет отклоняться силой Кориолиса вправо по ходу движения на северном полюсе и влево по ходу движения на южном. Читатель без труда подсчитает, пользуясь той же формулой кориолисова ускорения, что пуля, выпущенная из ружья с начальной скоростью 500 м/с, отклонится от цели в горизонтальной плоскости за одну секунду (т.е. на пути 500 м) на отрезок, равный 3,5 см.

Но почему же отклонение в горизонтальной плоскости на экваторе должно равняться нулю? Без строгих доказательств понятно, что так должно быть. На северном полюсе тело отклоняется вправо по движению, на южном – влево, значит, посередине между полюсами, т.е. на экваторе, отклонение будет равно нулю.

Вспомним опыт с маятником Фуко. Маятник, колеблющийся на полюсе, сохраняет плоскость своих колебаний. Земля, вращаясь, уходит из-под маятника. Такое объяснение дает опыту Фуко звездный наблюдатель. А наблюдатель, вращающийся вместе с земным шаром, объяснит этот опыт силой Кориолиса. Действительно, сила Кориолиса направлена перпендикулярно к земной оси и перпендикулярно к направлению движения маятника; иначе говоря, сила перпендикулярна к плоскости колебания маятника и будет эту плоскость непрерывно поворачивать. Можно сделать так, чтобы конец маятника вычерчивал траекторию движения. Траектория представляет собой «розетку», показанную на рис. 27. На этом рисунке за полтора периода колебания маятника «Земля» поворачивается на четверть оборота. Маятник Фуко поворачивается много медленнее. На полюсе плоскость колебания маятника за одну минуту повернется на 1/4 градуса. На северном полюсе плоскость будет поворачиваться вправо по ходу маятника, на южном – влево.

На широтах центральной Европы эффект Кориолиса будет несколько меньше, чем на экваторе. Пуля в примере, который мы только что привели, отклонится не на 3,5 см, а на 2,5 см. Маятник Фуко повернется за одну минуту примерно на 1/6 долю градуса.

Должны ли учитывать силу Кориолиса артиллеристы? Пушка Берта, из которой немцы вели обстрел Парижа во время первой мировой войны, находилась в 110 км от цели. Отклонение Кориолиса достигает в этом случае 1600 м. Это уже не маленькая величина.

Если летающий снаряд будет отправлен на большое расстояние без учета силы Кориолиса, то он значительно отклонится от курса. Этот эффект велик не потому, что велика сила (для снаряда в 10 т, имеющего скорость 1000 км/ч, сила Кориолиса будет около 25 кГ), а потому, что сила действует непрерывно длительное время.

Конечно, влияние ветра на неуправляемый снаряд может быть не менее значительным. Поправка к курсу, которая дается пилотом, обусловлена действием ветра, эффектом Кориолиса и несовершенством самолета или самолета-снаряда.

Какие специалисты, кроме авиаторов и артиллеристов, должны принять эффект Кориолиса во внимание? К ним относятся, как ни странно, и железнодорожники. На железной дороге один рельс под действием кориолисовой силы истирается изнутри заметно больше другого. Нам ясно, какой именно: в северном полушарии это будет правый рельс (по ходу движения), в южном – левый. Лишены хлопот по этому поводу лишь железнодорожники экваториальных стран.

Размытие правых берегов в северном полушарии объясняется точно так же, как и истирание рельсов.

Отклонения русла во многом связаны с действием силы Кориолиса. Оказывается, реки северного полушария обходят препятствия с правой стороны.

Известно, что в район пониженного давления направляются потоки воздуха. Но почему такой ветер называется циклоном? Ведь корень этого слова указывает на круговое (циклическое) движение.

Так оно и есть – в районе пониженного давления возникает круговое движение воздушных масс (рис. 28). Причина заключается в действии силы Кориолиса. В северном полушарии все устремляющиеся к месту пониженного давления воздушные потоки отклоняются вправо по своему движению. Посмотрите на рис. 29 – вы видите, что это приводит к отклонению дующих в обоих полушариях от тропиков к экватору ветров (пассатов) к западу.

Почему же такая небольшая сила играет такую большую роль в движении воздушных масс?

Это объясняется незначительностью сил трения. Воздух легко подвижен, и малая, но постоянно действующая сила приводит к важным следствиям.

Из книги Физика: Парадоксальная механика в вопросах и ответах автора Гулиа Нурбей Владимирович

4. Движение и сила

Из книги Новейшая книга фактов. Том 3 [Физика, химия и техника. История и археология. Разное] автора Кондрашов Анатолий Павлович

Из книги Возвращение чародея автора Келер Владимир Романович

Великая сила «пустяков» У Леночки Казаковой может оторваться пуговица от платья, но она от этого не перестанет быть Леночкой Казаковой. Законы науки, особенно законы физики, не допускают ни малейшего неряшества. Воспользовавшись аналогией, можно сказать, что законы

Из книги Межпланетные путешествия [Полёты в мировое пространство и достижение небесных тел] автора Перельман Яков Исидорович

Самая загадочная сила природы Не говорю уже о том, как мало у нас надежды найти когда-нибудь вещество, непроницаемое для тяготения. Причина тяготения нам неизвестна: со времен Ньютона, открывшего эту силу, мы ни на шаг не приблизились к познанию ее внутренней сущности. Без

Из книги Физика на каждом шагу автора Перельман Яков Исидорович

Лошадиная сила и работа лошади Мы часто слышим выражение «лошадиная сила» и привыкли к нему. Поэтому мало кто отдает себе отчет в том, что это старинное наименование совершенно неправильно. «Лошадиная сила» – не сила, а мощность и притом даже не лошадиная. Мощность – это

Из книги Движение. Теплота автора Китайгородский Александр Исаакович

Сила звука Как ослабевает звук с расстоянием? Физик ответит вам, что звук ослабевает «обратно пропорционально квадрату расстояния». Это означает следующее: чтобы звук колокольчика на тройном расстоянии был слышен так же громко, как на одинарном, нужно одновременно

Из книги Для юных физиков [Опыты и развлечения] автора Перельман Яков Исидорович

Сила – вектор Сила, так же как и скорость, есть векторная величина. Ведь она всегда действует в определенном направлении. Значит, и силы должны складываться по тем правилам, которые мы только что обсуждали.Мы часто наблюдаем в жизни примеры, иллюстрирующие векторное

Из книги Кто изобрел современную физику? От маятника Галилея до квантовой гравитации автора Горелик Геннадий Ефимович

Ускорение и сила Если на тело силы не действуют, то оно может двигаться только без ускорения. Напротив, действие на тело силы приводит к ускорению, и при этом ускорение тела будет тем большим, чем больше сила. Чем скорее мы хотим привести в движение тележку с грузом, тем

Из книги Как понять сложные законы физики. 100 простых и увлекательных опытов для детей и их родителей автора Дмитриев Александр Станиславович

Сила и потенциальная энергия при колебании При всяком колебании около положения равновесия на тело действует сила, «желающая» возвратить тело в положение равновесия. Когда точка удаляется от положения равновесия, сила замедляет движение, когда точка приближается к

Из книги Гиперпространство автора Каку Мичио

2. Центробежная сила Раскройте зонтик, уприте его концом в пол, закружите и бросьте внутрь мячик, скомканную бумагу, носовой платок – вообще какой-нибудь легкий и неломкий предмет. Вы убедитесь, что зонтик словно не желает принять подарка: мяч или бумажный ком сами

Из книги автора

Из книги автора

Глава 3 Гравитация - первая фундаментальная сила С небес на землю и обратно В современной физике говорят о четырех фундаментальных силах. Первой открыли силу гравитации. Известный школьникам закон всемирного тяготения определяет силу притяжения F между любыми массами

Из книги автора

73 Сила в сантиметрах, или Наглядно закон Гука Для опыта нам потребуются: воздушный шарик, фломастер. В школе проходят закон Гука. Жил такой знаменитый ученый, который изучал сжимаемость предметов и веществ и вывел свой закон. Закон этот очень простой: чем сильнее мы

Из книги автора

Сила = геометрия Несмотря на постоянные болезни, Риман в конечном счете изменил бытующие представления о значении силы. Еще со времен Ньютона ученые считали силу мгновенным взаимодействием удаленных друг от друга тел. Физики называли ее «дальнодействием», это означало,

При движении тела относительно вращающейся системы отсчета, кроме центробежной силы, появляется еще одна сила, называемая силой Кориолиса .

Рассмотрим рис.5. Шарик массой m движется прямолинейно со скоростью от центра к краю диска. Если диск неподвижен, то шарик попадает в точку М , а если диск вращается с постоянной угловой скоростью ω, то шарик попадает в точку N . Это обусловлено тем, что на шарик действует сила Кориолиса.

Рис.5

Появление силы Кориолиса можно обнаружить, если рассмотреть пример с шариком на спице на вращающемся диске, но без пружины. Для того чтобы заставить шарик двигаться с некоторой скоростью вдоль спицы, необходима боковая сила. Шарик вращается вместе с диском с постоянной угловой скоростью w, поэтому его момент импульса равен:

Если шарик будет перемещаться вдоль спицы с постоянной скоростью , то с изменением момент импульса шарика изменится. А это означает, что на движущееся во вращающейся системе тело должен действовать некоторый момент силы, который согласно основному уравнению динамики вращательного движения равен

Для того чтобы заставить шарик двигаться по вращающемуся диску вдоль радиальной прямой со скоростью , необходимо прилагать боковую силу

направленную перпендикулярно . Относительно вращающейся системы (диска) шарик движется с постоянной скоростью.

Это можно объяснить тем, что сила уравновешивается приложенной к шарику силой инерции , перпендикулярной к скорости (рис.6). Сила и есть Кориолисова сила инерции. Она определяется выражением

Рис.6

С учетом направления силу Кориолиса можно представить в виде

Сила Кориолиса всегда перпендикулярна скорости тела . Во вращающейся системе отсчета при = 0 эта сила отсутствует. Таким образом, Кориолисова сила инерции возникает только тогда, когда система отсчета вращается, а тело движется относительно этой системы. Действием силы Кориолиса объясняется ряд эффектов, наблюдающихся на поверхности Земли, например, поворот плоскости колебаний маятника Фуко относительно Земли, отклонение к востоку от линии отвеса свободно падающих тел, размытие правого берега рек в северном полушарии и левого в южном, неодинаковый износ рельсов при двухколейном движении.

Начало формы

 

Возможно, будет полезно почитать: