Химическая реакция не протекает между. Почему протекают химические реакции — Гипермаркет знаний. Варианты задач для самостоятельного решения

Организм совершает работу, затрачивая внутреннюю энергию, запасенную в виде энергии химического взаимодействия атомов составляющих его веществ. Математическое выражение -ДE = -Q - W первого начала термодинамики определяет точное соотношение между расходом внутренней энергии системы ДЕ, работой W, совершаемой системой, и энергией Q, которая теряется в виде теплоты. Однако из первого начала термодинамики нельзя определить часть расходуемой внутренней энергии, которая может быть преобразована в работу. Теоретические оценки затрат осуществляются на основе второго начала термодинамики. Этот закон накладывает строгие ограничения на эффективность преобразования энергии в работу и, кроме того, позволяет ввести критерии возможности самопроизвольного протекания того или иного процесса. Процесс называется самопроизвольным, если он осуществляется без каких-либо воздействий, когда система предоставлена самой себе. Существуют процессы, при которых внутренняя энергия системы не меняется (ДЕ = 0). К таким процессам относится, например, ионизация уксусной кислоты в воде. Целый ряд самопроизвольных процессов протекает с увеличением внутренней энергии (ДЕ > 0). Сюда относятся, в частности, типичные реакции образования бионеорганических соединений альбумина (белок плазмы крови) с ионами металлов, например Сu2+. Изменение внутренней энергии АЕ для закрытых систем не может служить критерием самопроизвольного протекания процессов. Следовательно, первого начала термодинамики, из которого получен этот критерий, недостаточно для решения вопроса о самопроизвольности, равно как и об эффективности процессов. Решение этих вопросов достигается с помощью второго начала термодинамики. Для формулировки второго начала термодинамики необходимо ввести понятия обратимого и необратимого в термодинамическом смысле процессов.Если система находится в равновесии, это состояние поддерживается как угодно долго при неизменности внешних условий. При изменении внешних условий состояние системы может меняться, т. е. в системе может протекать процесс. Процесс называется термодинамически обратимым, если при переходе из начального состояния 1 в конечное состояние 2 все промежуточные состояния оказываются равновесными. Процесс называется термодинамически необратимым, если хоть одно из промежуточных состояний не-равновесно. Обратимый процесс можно осуществить лишь при достаточно медленном изменении параметров системы - температуры, давления, концентрации веществ и др. Скорость изменения параметров должна быть такой, чтобы возникающие в ходе процесса отклонения от равновесия были пренебрежимо малы. Следует отметить, что с обратимостью связана важная проблема медицины - консервация тканей при низких температурах. Обратимые процессы являются предельным случаем реальных процессов, происходящих в природе и осуществляемых в промышленности или в лабораториях.

В качестве критерия самопроизвольности процессов в открытых и закрытых системах вводится новая функция состояния - энергия Гиббса. Эта функция получила название в честь великого американского физика Д. У. Гиббса (1839--1903), который вывел эту функцию, а затем использовал в термодинамических работах.Энергия Гиббса определяется через энтальпию Н и энтропию S с помощью соотношений:

G = H - S, ДG = ДH - ДS.

На основе энергии Гиббса второе начало термодинамики можно сформулировать следующим образом: в изобарно-изотермических условиях (р, Т = const) в системе самопроизвольно могут осуществляться только такие процессы, в результате которых энергия Гиббса системы уменьшается (ДG <0).В состоянии равновесия энергия Гиббса системы не ме-няется (G = const, AG = 0).

ДG < 0, р, Т = const. Из изложенного вытекает, что энергия Гиббса играет большую роль в изучении биоэнергетических процессов. С помощью этой функции состояния можно прогнозировать направление самопроизвольных процессов в биологических системах и рассчитывать мак-симально достижимый КПД.

Энергия Гиббса G так же, как и энтальпия Н, является функцией состояния системы. Поэтому изменение энергии Гиббса ДG может использоваться для характеристики химических превращений аналогично изменению энтальпии ДН. Уравнения реакции, для которых указывается соответствующее этим реакциям изменение энергии Гиббса, также называются термохимическими. Химические реакции, при протекании которых происходит уменьшение энергии Гиббса системы (ДG < 0) и совершается работа, называются экзергоническими. Реакции, в результате которых энергия Гиббса возрастает (ДG > 0) и над системой совершается работа, называются эндергоническими. Выведенная на основе второго начала термодинамики энергия Гиббса является функцией состояния. Следовательно, так же, как и для энтальпии, может быть сформулирован закон Гесса для энергии Гиббса в следующей форме: изменение энергии Гиббса при образовании заданных продуктов из данных реагентов при постоянных давлении и температуре не зависит от числа и вида реакций, в результате которых образуются эти продукты.Важный пример применения закона Гесса - расчет энергии Гиббса реакции окисления глюкозы дикислородом. Изменение энергии Гиббса в этой реакции при р = 101 кПа и Т = 298°К, определенное вне организма, равно ДG° = -2880 кДж/моль. Соответствующее термохимическое уравнение записывается в виде:

С6Н12О6 + 6О2 = 6СО2 + 6Н2О, ДGp-я° = -2880 кДж/моль.

В химических системах вещества стремятся к минимуму внутренней энергии. Экзотермические реакции протекают самопроизвольно, так как вещества при их окончании достигают свой минимум внутренней энергии. Но также самопроизвольно протекают и эндотермические реакции - это растворение солей.

Макросостояние системы тем более вероятно, чем большим числом микросостояний оно может быть описано. Условия самопроизвольного протекания реакций:
1. стремление системы к достижению минимального значения внутренней энергии
2. стремление системы к более вероятному своему состоянию.

Но часто происходит столкновение этих двух определяющих факторов, и возникает состояние называемое химическим равновесием. Функция, которая учитывает оба этих фактора – энергия Гиббса .

Самопроизвольно протекают те процессы, энергия Гиббса которых равна отрицательному значению.

Если температура мала , то энтальпия равна энергии Гиббса и самопроизвольно протекают экзотермические реакции.

Если высокая температура, то отрицательное значение имеет энергия Гиббса и реакции протекают самопроизвольно. Необратимые реакции протекают до полного израсходования одного из реагентов.
Обратимые протекают во взаимопротивоположных направлениях.В состоянии химического равновесия система достигает своего минимального значения энергии и энергия Гиббса, как и константа химического равновесия, равна нулю .


Константа химического равновесия. Расчет Кр и Кс.

Рассмотрим гомогенную химическую реакцию: Реакции протекают до полного исчезновения исходных веществ, а останавливаются при достижении определенного состояния равновесия. Условия химического равновесия:

Равновесные давления участников реакции: Согласно закону действующих масс константа равновесия, выраженная через парциальные давления. Размерность . изменение числа молей при протекании реакции.

При написании констант равновесия гетерогенных реакции учитываются парциальные давления только газообразных участников реакций, поскольку давления пара конденсированных фаз малы по сравнению с газообразными компонентами.

константа равновесия, выраженная через концентрации.

Кроме того существуют где а-активности, н-мольная доля.

Соотношения между константами равновесия:

Принцип Ле-Шателье.

При неизменных условиях химическое равновесие в системе может сохраняться сколь угодно долго. В случае же изменения условий (концентрация, температура, давление) одна из противоположно направленных реакций может ускориться, чем другая. После этого равновесие сместится, и установится новое состояние равновесия.

Принцип Ле-Шателье: если на систему, находящуюся в истинном химическом равновесии, оказывают воздействие извне путем изменения какого-либо из условий, определяющих положение равновесия, то оно смещается в направлении той реакции, протекание которой ослабляет эффект произведенного воздействия.

На протяжении всей жизни мы постоянно сталкиваемся с физическими и химическими явлениями. Природные физические явления для нас столь привычны, что мы уже давно не придаём им особого значения. Химические реакции постоянно протекают в нашем организме. Энергия, которая выделяется при химических реакциях, постоянно используется в быту, на производстве, при запуске космических кораблей. Многие материалы, из которых изготовлены окружающие нас вещи, не взяты в природе в готовом виде, а изготовлены с помощью химических реакций. В быту для нас не имеет особого смысла разбираться в том, что же произошло. Но при изучении физики и химии на достаточном уровне без этих знаний не обойтись. Как отличить физические явления от химических? Существуют ли какие-либо признаки, которые могут помочь это сделать?

При химических реакциях из одних веществ образуются новые, отличные от исходных. По исчезновению признаков первых и появлению признаков вторых, а также по выделению или поглощению энергии мы заключаем, что произошла химическая реакция.

Если прокалить медную пластинку, на её поверхности появляется чёрный налёт; при продувании углекислого газа через известковую воду выпадает белый осадок; когда горит древесина, появляются капли воды на холодных стенках сосуда, при горении магния получается порошок белого цвета.

Выходит, что признаками химической реакций являются изменение окраски, запаха, образование осадка, появление газа.

При рассмотрении химических реакций, необходимо обращать внимание не только на то, как они протекают, но и на условия, которые должны выполняться для начала и течения реакции.

Итак, какие же условия должны быть выполнены для того, чтобы началась химическая реакция?

Для этого прежде всего необходимы реагирующие вещества привести к соприкосновению (соединить, смешать их). Чем более измельчены вещества, чем больше поверхность их соприкосновения, тем быстрее и активнее протекает реакция между ними. Например, кусковой сахар трудно поджечь, но измельчённый и распылённый в воздухе он сгорает за считанные доли секунды, образуя своеобразный взрыв.

С помощью растворения мы можем раздробить вещество на мельчайшие частицы. Иногда предварительное растворение исходных веществ облегчает проведение химической реакции между веществами.

В некоторых случаях соприкосновение веществ, например, железа с влажным воздухом, достаточно, чтобы произошла реакция. Но чаще одного соприкосновения веществ для этого недостаточно: необходимо выполнение ещё каких-либо условий.

Так, медь не вступает в реакцию с кислородом воздуха при невысокой температуре около 20˚-25˚С. Чтобы вызвать реакцию соединения меди с кислородом, необходимо прибегнуть к нагреванию.

На возникновение химических реакций нагревание влияет по – разному. Для одних реакций требуется непрерывное нагревание. Прекращается нагревание – прекращается и химическая реакция. Например, для разложения сахара необходимо постоянное нагревание.

В других случаях нагревание требуется лишь для возникновения реакции, оно даёт толчок, а далее реакция протекает без нагревания. Например, такое нагревание мы наблюдаем при горении магния, древесины и других горючих веществ.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Итак, имеем два критерия возможности самопроизвольного протекания химического процесса – изменение энтальпии DН, которое отражает взаимодействие атомов, образование химических связей, то есть определенное упорядочение системы и изменение энтропии DS, которое отражает противоположную тенденцию к беспорядочному расположению частиц. Если DS=0, то движущей силой процесса будет стремление системы к минимуму внутренней энергии, то есть критерий процесса – уменьшение энтальпии или DН<0.

Если DН=0, то критерий самопроизвольного протекания процесса DS>0.

Чтобы иметь возможность количественно сопоставить эти два критерия, нужно, чтобы они выражались в одинаковых единицах (DН – кДж, DS – Дж/К). Очевидно, чтобы выразить энтропийный фактор в единицах энергии, его нужно домножить на температуру. Это тем более логично, что повышение Т способствует увеличению беспорядка в системе. Тогда ТDS – энтропийный фактор процесса, DН – энтальпийный. В состоянии равновесия оба этих фактора должны быть равны:

DН= ТDS . (8.12)

Это уравнение универсально, оно относится и к равновесию жидкость – пар и к другим фазовым превращениям, а также к химическим реакциям. Благодаря этому равенству можно рассчитать изменение энтропии в равновесном процессе, так как при равновесии:

Однако нас интересует количественный критерий принципиальной возможности протекания процесса. В механике критерий падения тела это уменьшение его гравитационного потенциала, который не зависит от пути перемещения тела. По аналогии химический процесс можно охарактеризовать своим потенциалом, который должен уменьшаться в ходе самопроизвольного процесса. Этот потенциал при постоянной температуре и давлении принято называть изобарно – изотермическим потенциалом Гиббса G. Убыль этого потенциала не зависит от пути процесса и равна максимальной работе, которую можно получить, переходя от данного состояния к равновесному (за вычетом работы против внешнего давления).

DG=W р max . (8.13)

То есть энергия Гиббса – это часть энергетического эффекта химической реакции, которую можно превратить в работу, ее называют свободной энергией.

В таком случае условием возможности протекания процесса будет DG<0, но поскольку в состоянии равновесия DG=0, то из уравнения (1) получаем:

DG=DН - ТDS , (8.14)

Таким образом, мы определяем G=Н – ТS и можем нарисовать его изменение в ходе процесса (рисунок 8.5):

где А – исходные вещества;

В – продукты реакции.

В левой части графика (8.5) – уменьшение значения G, идет прямая реакция. Для нее DG<0. Справа от положения равновесия идет обратная реакция, для нее DG<0. В состоянии равновесия DG=0.

Как влияют величины энтальпийного и энтропийного фактора на протекание процесса?

Возможны следующие случаи (рисунок 8.6):

1) экзотермическая реакция, DН<0:

а) DS>0, тогда для любого Т DG будет меньше нуля и процесс идет всегда, причем до конца;

б) DS<0, в этом случае все будет зависеть от соотношения абсолютных значений энтальпийного и энтропийного фактора, DG<0 – реакция идет, DG>0 – реакция не идет.

Экзотермические реакции, сопровождаются уменьшением энтропии, идут при низких температурах, увеличение Т способствует протеканию обратной реакции (Принцип Ле Шателье).

2) Эндотермическая реакция, DН>0:

а) DS>0, реакция возможна только если | ТDS|>|DН|, тогда DG>0, то есть при высоких температурах;

б) если же, DS<0, то DG>0 при любых температурах и процесс самопроизвольно идти не может.

Пример – реакция окисления глюкозы до CO 2 и H 2 O:

С 6 Н 12 О 6 + 6О 2 ®6СО 2 + 6Н 2 О DН= - 2810 кДж.

Энтропия при этом, очевидно, возрастает. Следовательно, обратный процесс принципиально не может идти самопроизвольно. Для его протекания требуется энергия извне (фотосинтез).

Следует отметить, что в вопросе о возможности протекания процесса термодинамический критерий – истина в последней инстанции. Если изменение значения энергии Гиббса положительные DG>0, никакие катализаторы не помогут провести процесс. При изменении значения энергии Гиббса отрицательные DG<0 процесс может быть заморожен.

До сих пор рассматривали процессы, протекающие при постоянном давлении. Если обратиться к процессам, протекающим при постоянном объеме, получим другое значение термодинамического потенциала – потенциал Гельмгольца:

DF = DU - ТDS , (8.15)

Для решения вопроса о возможности протекания процесса, для расчетов энергии Гиббса DG необходимо установить, от чего она зависит и стандартизировать ее.

Значении DН зависит от температуры и давления и в первом приближении мы считаем, что эта зависимость незначительна и пользуемся стандартными значениями DН°. значение DS кроме давления и температуры зависит еще от концентрации (S=S° - RlnC), следовательно, значение DG также будет зависеть от концентрации реагирующих веществ, а они в ходе процесса меняются. Рассмотрим эту зависимость.

аА®bВ (для простоты)

DG=DН - ТDS, как для всякой реакции.

Считая, что DН слабо зависит от Т, DН = DН° = bDН° f (B) - aDН° f (A),

DS = bS(B) – aS(A) = b(S° B – Rln(B)) – a(S° A – Rln(A)),

Перегруппировав и вспомнив свойства логарифмов получим:

DS= S° - Rln(B b /A a) ,

Подставив в уравнение для DG, получим

DG=DН° - ТDS° + Rln(B b /A a) = DG + RTln(B b /A a), (8.16)

Это уравнение изотермы Вант-Гоффа.

где DG°=DН° - ТDS° - термодинамический потенциал, определенный для единичных концентраций или для чистых веществ, то есть стандартный термодинамический потенциал - он определен для единичных концентраций начальных и конечных веществ и для общего давления 1 атм, но может быть разным для разных температур.

Вопросы для самоконтроля

1. Какие реакции называются: а) экзотермическими; б) эндотермическими?

2. Что называется тепловым эффектом реакции? В каких единицах он выражается?

3. Что называется энтальпией? Какой знак имеет изменение энтальпии для экзотермических реакций и эндотермических реакций?

4. Какие условия называются стандартными?

5. Как формулируется закон Гесса?

6. Что называется теплотой образования вещества? Сформулируйте первое следствие из закона Гесса.

7. Что называется теплотой сгорания вещества? Сформулируйте второе следствие из закона Гесса.

8. Сформулируйте третий закон термодинамики.

9. Что такое фаза химической системы?

10. Как называются функции состояния системы и от чего они зависят?

11. В результате каких процессов внутренняя энергия системы увеличивается? Какой знак будет иметь работа, если Q = 0 ?

12. Увеличится ли внутренняя энергия системы, если Q = 0 и W= 0?

13. К системе подведена теплота 200 кДж, система совершила работу против действия внешних сил, равную 150 кДж. На какую величину изменилась внутренняя энергия системы? Какой знак имеет Δ U?

14. Приведите два пути окисления серы до SO 3 . Составьте энтальпийную диаграмму процесса.

15. Газовые выбросы тепловых станций и двигателей внутреннего сгорания содержат оксиды азота. Реакции их образования очень сложны, но в наиболее простом виде их можно представить уравнениями:

a) ½ N 2 + ½ O 2 = NO.

6) NO + ½ O 2 = NO 2 .

Определите стандартные энтальпии этих реакций при 298 К и укажите, какая и: них - эндотермическая, какая - экзотермическая.

16. Термитная смесь состоит из порошка алюминия и Fe 2 O 3 . Запишите уравнение реакции между этими веществами и рассчитайте энтальпию этой реакции.

17. Приведите примеры самопроизвольных процессов, сопровождающихся по­нижением энтальпии системы (экзотермических процессов).

18. Приведите примеры самопроизвольных процессов, сопровождающихся пе­реходом системы из более упорядоченного в менее упорядоченное состояние.

19. Какой знак имеет энтропия процессов: а) сублимации иода; б) перехода бе­лого олова в серое?

20. Можно ли предсказать влияние температуры на направление химической реакции, если известна ее энтальпия? Ответ подтвердите на примере какой-либо реакции.

22. Возможно ли самопроизвольное окисление азота по уравнению:

½ N 2 + О 2 = NO 2

при стандартных состояниях N 2 , O 2 , и NO 2 , при 298 К и других температурах? Ответ подтвердите расчетом.

23. В чем разница между энергией Гиббса и стандартной энергией Гиббса хи­мической реакции?

>> Химия: Почему протекают химические реакции

Предсказание возможности осуществления той или иной реакции - одна из основных задач, которая стоит перед химиками.

На бумаге можно написать уравнение любой химической реакции («бумага все стерпит»), а возможна ли такая реакция практически?

В одних случаях (например, при обжиге известняка: СаСО3-> СаО + С02) достаточно повысить температуру, чтобы реакция началась, а в других (например, восстановление кальция из его оксида водородом: СаО + Н2 ->Са + Н20) реакцию невозможно осуществить ни при каких условиях!

Экспериментальная проверка возможности протекания той или иной реакции в разных условиях - дело трудоемкое и неэффективное. Но можно теоретически ответить на такой вопрос, основываясь на законах химической термодинамики (с которыми вы знакомились на уроках физики).

Один из наиболее важных законов природы (первый закон термодинамики) - это закон сохранения энергии: энергия не возникает из ничего и не исчезает бесследно, а только переходит из одной формы в другую.

В общем случае энергия объекта складывается из трех ее основных видов: кинетической, потенциальной, внутренней. Какой из этих видов наиболее важен при рассмотрении химических реакций? Конечно же внутренняя энергия (е)! Ведь она складывается из кинетической энергии движения атомов, молекул, ионов; из энергии их взаимного притяжения и отталкивания; из энергии, связанной с движением электронов в атоме, их притяжением к ядру, взаимным отталкиванием электронов и ядер, а также внутриядерной энергии.

Вам известно, что при химических реакциях одни химические связи разрушаются, а другие образуются; при этом изменяется электронное состояние атомов, их взаимоположение, а потому и внутренняя энергия продуктов реакции отличается от внутренней энергии реагентов.

Рассмотрим два возможных случая.

1. E реагентов > E продуктов. Исходя из закона сохранения энергии, в результате такой реакции энергия должна выделяться в окружающую среду: нагревается воздух, пробирка, автомобильный двигатель, продукты реакции.

Реакции, при которых выделяется энергия и нагревается окружающая среда, называют экзотермическими (рис. 23).

2. Е реагентов < Е продуктов. Исходя из закона сохранения энергии, следует предположить, что исходные вещества при таких процессах должны поглощать энергию из окружающей среды, температура реагирующей системы должна понижаться.

Реакции, при протекании которых энергия поглощается из окружающей среды, называют эндотермическими.

Энергия, которая выделяется или поглощается в химической реакции, называется, как вы знаете, тепловым эффектом этой реакции. Этот термин используют повсеместно, хотя точнее было бы говорить об энергетическом эффекте реакции.

Тепловой эффект реакции выражается в единицах энергии. Энергия отдельных атомов и молекул - величина незначительная. Поэтому тепловые эффекты реакций относят обычно к тем количествам веществ, которые определены уравнением, и выражают в Дж или кДж.

Уравнение химической реакции, в котором указан тепловой эффект, как вы уже знаете, называется термохимическим уравнением.

Например, термохимическое уравнение:

2Н2 + 02 = 2Н20 + 484 кДж

Знание тепловых эффектов химических реакций имеет большое практическое значение. Например, при проектировании химического реактора важно предусмотреть или приток энергии для поддержания реакции путем подогрева реактора, или, наоборот, отвод избытка теплоты, чтобы не было перегрева реактора со всеми вытекающими отсюда последствиями, вплоть до взрыва.

Если реакция проходит между несложными молекулами, то подсчитать тепловой эффект реакции достаточно просто.

Например:

Н 2 + Сl 2 -> 2НСl

Энергия затрачивается на разрыв двух химических связей Н-Н и Сl-Сl, энергия выделяется при образовании двух химических связей Н-Сl. Именно в химических связях сосредоточена важнейшая составляющая внутренней энергии соединения. Зная энергии этих связей, можно по разности узнать тепловой эффект реакции (Фр).

Eн-н = 436 кДж/моль, Есl-сl = 240 кДж/моль,

Eнсl = 430 кДж/моль,

Q p = 2 430 - 1 436 - 1 240 = 184 кДж.

Следовательно, данная реакция - экзотермическая.

А как, например, рассчитать тепловой эффект реакции разложения карбоната кальция? Ведь это соединение немолекулярного строения. Как точно определить, какие именно связи и сколько их разрушается, какова их энергия, какие связи и сколько их образуется в оксиде кальция?

Для расчета тепловых эффектов реакций используют значения величин теплот образования всех участвующих в реакции химических соединений (исходных и продуктов).

Теплота образования соединения (Qобр) - это тепловой эффект реакции образования одного моля соединения из простых веществ, устойчивых в стандартных условиях (25 °С, 1 атм.).

При этих условиях теплота образования простых веществ равна нулю по определению.

С + 02 = С02 + 394 кДж

0,5Т2 + 0,502 = N0 - 90 кДж,

где 394 кДж и -90 кДж - теплоты образования С02 и N0 соответственно.

Если данное химическое соединение можно непосредственно получить из простых веществ, причем реакция идет количественно (100% -ный выход продуктов), достаточно провести реакцию и измерить ее тепловой эффект с помощью специального прибора - калориметра. Так определяют теплоты образования многих оксидов, хлоридов, сульфидов и т. п. Однако подавляющее большинство химических соединений трудно или невозможно непосредственно получить из простых веществ.

Например, сжигая уголь в кислороде , нельзя определить Qобр угарного газа СО, так как всегда идет и процесс полного окисления. В этом случае на помощь приходит закон, сформулированный в прошлом веке петербургским академиком Г. И. Гессом.

Тепловой эффект химической реакции не зависит от промежуточных стадий (при условии, что исходные вещества и продукты реакции одинаковы).

Знание теплот образования соединений позволяет оценить их относительную устойчивость, а также рассчитать тепловые эффекты реакций.

Тепловой эффект химической реакции равен сумме теплот образования всех продуктов реакции минус сумма теплот образования всех реагентов (с учетом коэффициентов в уравнении реакции).

Организм человека - это уникальный «химический реактор», в котором идет множество разнообразных химических реакций. Их главное отличие от процессов, протекающих в пробирке, колбе, промышленной установке, состоит в том, что в организме все реакции протекают в «мягких» условиях (атмосферное давление, невысокая температура), при этом образуется мало вредных побочных продуктов.

Процесс окисления органических веществ кислородом - главный источник энергии, а его основные конечные продукты - С02 и Н20.

Эта выделившаяся энергия представляет собой большую величину, и если бы пища окислялась в организме быстро и полностью, то уже несколько съеденных кусочков сахара вызвали бы перегревание организма. Но биохимические процессы, суммарный тепловой эффект которых по закону Гесса не зависит от механизма и является постоянной величиной, идут ступенчато, как бы растянуты во времени. Поэтому организм не «сгорает», а экономно расходует эту энергию на процессы жизнедеятельности. Но всегда ли происходит так?

Каждый человек должен хотя бы приблизительно представлять, сколько энергии поступает в его организм с пищей и сколько расходуется в течение суток.

Одна из основ рационального питания такова: количество поступающей с пищей энергии не должно превышать расход энергии (или быть меньше) более чем на 5%, иначе нарушается обмен веществ, человек полнеет или худеет.

Энергетический эквивалент пищи - ее калорийность, выражаемая в килокалориях на 100 г продукта (часто указывают на упаковке, можно также найти в специальных справочниках и книгах по кулинарии). А расход энергии в организме зависит от возраста, пола, интенсивности труда. Например, женщине (секретарь, бухгалтер) требуется в сутки около 2100 ккал, а мужчине (лесоруб, бетонщик, шахтер) ежесуточно необходимы приблизительно 4300 ккал.

Наиболее полезно питание с невысокой калорийностью, но с наличием всех компонентов в пище (белков, жиров, углеводов, минеральных веществ, витаминов , микроэлементов).

Энергетическая ценность продуктов питания и теплотворная способность топлива связаны с экзотермическими реакциями их окисления. Движущей силой таких реакций является «стремление» системы к состоянию с наименьшей внутренней энергией.

Экзотермические реакции начинаются самопроизвольно, или требуется только небольшой «толчок» - первоначальная подача энергии.

А что же тогда является движущей силой эндотермических реакций, в ходе которых тепловая энергия поступает из окружающей среды и запасается в продуктах реакции, превращаясь в их внутреннюю энергию? Эта «сила» связана со стремлением любой системы к наиболее вероятному состоянию, которое характеризуется максимальным беспорядком, ее называют энтропией. Например, молекулы, входящие в состав воздуха, не падают на Землю, хотя минимуму потенциальной энергии каждой молекулы соответствует наиболее низкое ее положение, так как стремление к наиболее вероятному состоянию заставляет молекулы беспорядочно распределяться в пространстве.

Представьте, что вы в стакан насыпали разные орехи. Практически невозможно добиться при встряхивании их расслоения, упорядоченности, так как и в этом случае система будет стремиться к наиболее вероятному состоянию, при котором беспорядок в системе возрастает, поэтому орехи всегда будут перемешаны. Причем чем больше частиц мы имеем, тем вероятность беспорядка больше. Самый большой порядок в химических системах - в идеальном кристалле при температуре абсолютного нуля. Говорят, что энтропия в данном случае равна нулю. С повышением температуры в кристалле начинают усиливаться беспорядочные колебания атомов (молекул, ионов). Энтропия увеличивается. Особенно резко это происходит в момент плавления при переходе от твердого тела к жидкости и еще в большей степени - в момент испарения при переходе от жидкости к газу.

Энтропия газов значительно превышает энтропию жидких и тем более твердых тел. Если вы прольете немного бензина в закрытом помещении, например в гараже, то скоро почувствуете его запах во всем объеме помещения. Происходит испарение (эндотермический процесс) и диффузия, беспорядочное распределение паров бензина по всему объему. Пары бензина имеют большую энтропию по сравнению с жидкостью.

Процесс кипения воды с энергетической точки зрения тоже эндотермический процесс, но выгоден с точки зрения увеличения энтропии при переходе жидкости в пар. При температуре 100 °С энтропийный фактор «перетягивает» энергетический - вода начинает кипеть - пары воды имеют большую энтропию по сравнению с жидкой водой.

Таблица 11 Некоторые значения стандартной молярной энтропии

Анализируя данные, приведенные в таблице 11, обратите внимание, насколько мало значение энтропии для алмаза, имеющего очень правильную структуру. Вещества, образованные более

Стандартная молярная энтропия - это значение энтропии для 1 моль вещества при температуре 298 К и давлении 10 5 Па.

сложными частицами, обладают очень большими значениями энтропии. Например, энтропия этана больше энтропии метана. Эндотермические реакции - это как раз те реакции, в которых наблюдается достаточно сильный рост энтропии, например, за счет образования газообразных продуктов из жидких или твердых веществ или же за счет увеличения числа частиц. Например:

СаС03 -> СаО + С02 - Q

Сделаем выводы:

1. Направление химической реакции определяется двумя факторами: стремлением к уменьшению внутренней энергии с выделением энергии и стремлением к максимальному беспорядку, то есть к увеличению энтропии.

2. Эндотермическую реакцию можно заставить идти, если она сопровождается увеличением энтропии.

3. Энтропия увеличивается при повышении температуры и особенно сильно при фазовых переходах: твердое - жидкое, твердое - газообразное.

4. Чем выше температура, при которой проводят реакцию, тем большее значение будет иметь энтропийный фактор по сравнению с энергетическим.

Существуют экспериментальные и теоретические методы определения знтропий различных химических соединений. Используя эти методы, можно количественно рассчитать изменения энтропии при протекании конкретной реакции аналогично тому, как это делается для теплового эффекта реакции. В результате появляется возможность предсказать направление химической реакции (табл. 12).

Составлены специальные справочные данные, которые включают сравнительную характеристику этих величин с учетом температуры.

Вернемся к случаю № 2 (см. табл. 12).

Все живое на нашей планете - от вирусов и бактерий до человека - состоит из высокоорганизованной материи, которая более упорядочена по сравнению с окружающим миром. Например, белок. Вспомните его структуры: первичная, вторичная, третичная. Вы уже хорошо знакомы и с «веществом наследственности» - ДНК, молекулы которого состоят из расположенных в строго определенной последовательности структурных единиц. Значит, синтез белка или ДНК сопровождается огромным уменьшением энтропии.

Tаблица 12 Возможность протекания химических реакций в зависимости от изменения энергии и энтропии


Кроме того, исходный строительный материал для роста растений и животных образуется в самих растениях из воды Н20 и углекислого газа С02 в процессе фотосинтеза:

6Н20 + 6С02(г) -> С6Н1206 + 602(г)

В этой реакции энтропия уменьшается, идет реакция с поглощением световой энергии. Значит, процесс эндотермический! Таким образом, реакции, которым мы обязаны жизнью, оказываются термодинамически запрещенными. Но они идут! А используется при этом энергия световых квантов в видимой области спектра, которая намного больше тепловой энергии (инфракрасных квантов). В природе эндотермические реакции с уменьшением энтропии, как вы видите, протекают в определенных условиях. Химики пока не могут создать такие условия искусственно.

1. При сгорании 7 г этилена выделяется 350 кДж теплоты. Определите тепловой эффект реакции.

2. Термохимическое уравнение реакции полного сгорания ацетилена:

2С2Н2 + 502 = 4С02 + 2Н20 + 2610 кДж Сколько теплоты выделяется при использовании 1,12 л ацетилена?

3. При соединении 18 г алюминия с кислородом выделяется 547 кДж теплоты. Составьте термохимическое уравнение этой реакции.

4. На основании того, что при сжигании 6,5 г цинка выделяется теплота, равная 34,8 кДж, определите теплоту образования оксида цинка.

5*. Определите тепловой эффект реакции:

2С2Н6(г) + 702(г) -> 4С02(г) + 6Н20(г), если

Qобр (Н20)(г) = 241,8 кДж/моль;

Qобр (С02)(г) = 393,5 кДж/моль;

Qобр (С2Н6)(г) = 89,7 кДж/моль.

6*. Определите теплоту образования этилена, если

С(тв) + 02(г) = С02(г) +393,5 кДж,

Н2(г) + 0,502(г) = Н20 + 241,8 кДж,

С2Н4(г) + 302(г) = 2С02(г) + 2Н20(г) + 1323 кДж.

7*. Вычислите тепловые эффекты реакций, протекающих в организме:

а) С6Н1206(т) -> 2С2Н5ОН(ж) + 2С02(г);

б) С6Н1206(т) + 602(г) -> 6С02(г) + 6Н20 (ж), если Qобр (Н20)(ж) = 285,8 кДж/моль;

Q обр (C02)(г) (см- задачи 5 и 6);Q обр (С2Н50Н)(ж) = 277,6 кДж/моль; Q обр (С6Н1206)(т) = 1273 кДж/моль.

8*. Исходя из следующих данных:

FеО(т) + СО(г) -> Fе(т) + С02(г) + 18,2 кДж, 2СО(г) + 02(г) -> 2С02(г) + 566 кДж, Q обр(Н2O)(г) = 241,8 кДж/моль, вычислите тепловой эффект реакции:

FеО(т) + Н2(г) -> Fе(т) + Н20(г).

презентация урока

 

Возможно, будет полезно почитать: