Дифференцирование показательной и логарифмической функции примеры. Логарифмическая производная. Дифференцирование показательно степенной функции. Вывод формулы логарифмической производной

Пусть
(1)
есть дифференцируемая функция от переменной x . В начале мы рассмотрим ее на множестве значений x , для которых y принимает положительные значения: . В дальнейшем мы покажем, что все полученные результаты применимы и для отрицательных значений .

В некоторых случаях, чтобы найти производную функции (1), ее удобно предварительно прологарифмировать
,
а затем вычислить производную. Тогда по правилу дифференцирования сложной функции ,
.
Отсюда
(2) .

Производная от логарифма функции называется логарифмической производной:
.

Логарифмическая производная функции y = f(x) - это производная натурального логарифма этой функции: (ln f(x))′ .

Случай отрицательных значений y

Теперь рассмотрим случай, когда переменная может принимать как положительные, так и отрицательные значения. В этом случае возьмем логарифм от модуля и найдем его производную:
.
Отсюда
(3) .
То есть, в общем случае, нужно найти производную от логарифма модуля функции .

Сравнивая (2) и (3) мы имеем:
.
То есть формальный результат вычисления логарифмической производной не зависит от того, взяли мы по модулю или нет. Поэтому, при вычислении логарифмической производной, мы можем не беспокоится о том, какой знак имеет функция .

Прояснить такую ситуацию можно с помощью комплексных чисел. Пусть, при некоторых значениях x , отрицательна: . Если мы рассматриваем только действительные числа, то функция не определена. Однако, если ввести в рассмотрение комплексные числа, то получим следующее:
.
То есть функции и отличаются на комплексную постоянную :
.
Поскольку производная от постоянной равна нулю, то
.

Свойство логарифмической производной

Из подобного рассмотрения следует, что логарифмическая производная не изменится, если умножить функцию на произвольную постоянную :
.
Действительно, применяя свойства логарифма , формулы производной суммы и производной постоянной , имеем:

.

Применение логарифмической производной

Применять логарифмическую производную удобно в тех случаях, когда исходная функция состоит из произведения степенных или показательных функций. В этом случае операция логарифмирования превращает произведение функций в их сумму. Это упрощает вычисление производной.

Пример 1

Найти производную функции:
.

Решение

Логарифмируем исходную функцию:
.

Дифференцируем по переменной x .
В таблице производных находим:
.
Применяем правило дифференцирования сложной функции .
;
;
;
;
(П1.1) .
Умножим на :

.

Итак, мы нашли логарифмическую производную:
.
Отсюда находим производную исходной функции:
.

Примечание

Если мы хотим использовать только действительные числа, то следует брать логарифм от модуля исходной функции:
.
Тогда
;
.
И мы получили формулу (П1.1). Поэтому результат не изменился.

Ответ

Пример 2

С помощью логарифмической производной, найдите производную функции
.

Решение

Логарифмируем:
(П2.1) .
Дифференцируем по переменной x :
;
;

;
;
;
.

Умножим на :
.
Отсюда мы получаем логарифмическую производную:
.

Производная исходной функции:
.

Примечание

Здесь исходная функция неотрицательная: . Она определена при . Если не предполагать, что логарифм может быть определен для отрицательных значений аргумента, то формулу (П2.1) следует записать так:
.
Поскольку

и
,
то это не повлияет на окончательный результат.

Ответ

Пример 3

Найдите производную
.

Решение

Дифференцирование выполняем с помощью логарифмической производной. Логарифмируем, учитывая что :
(П3.1) .

Дифференцируя, получаем логарифмическую производную.
;
;
;
(П3.2) .

Поскольку , то

.

Примечание

Проделаем вычисления без предположения, что логарифм может быть определен для отрицательных значений аргумента. Для этого возьмем логарифм от модуля исходной функции:
.
Тогда вместо (П3.1) имеем:
;

.
Сравнивая с (П3.2) мы видим, что результат не изменился.

Дифференцирование показательной и логарифмической функций

1. Число е. Функция у = е х, ее свойства, график, дифференцирование

Рассмотрим показательную функцию у=а х, где а > 1. Для различных оснований а получаем различные графики (рис. 232-234), но можно заметить, что все они проходят через точку (0; 1), все они имеют горизонтальную асимптоту у =0 при , все они обращены выпуклостью вниз и, наконец, все они имеют касательные во всех своих точках. Проведем для примера касательную к графику функции у=2x в точке х = 0 (рис. 232). Если сделать точные построения и измерения, то можно убедиться в том, что эта касательная образует с осью х угол 35° (примерно).

Теперь проведем касательную к графику функции у=3 x тоже в точке х = 0 (рис. 233). Здесь угол между касательной и осью х будет больше - 48°. А для показательной функции у = 10 x в аналогичной
ситуации получаем угол 66,5° (рис. 234).

Итак, если основание а показательной функции у=ах постепенно увеличивается от 2 до 10, то угол между касательной к графику функции в точке х=0 и осью абсцисс постепенно увеличивается от 35° до 66,5°. Логично считать, что существует основание а, для которого соответствующий угол равен 45°. Это основание должно быть заключено между числами 2 и 3, поскольку для функции у- 2х интересующий нас угол равен 35°, что меньше, чем 45°, а для функции у=3 x он равен 48°, что уже немного больше, чем 45°. Интересующее нас основание принято обозначать буквой е. Установлено, что число е - иррациональное, т.е. представляет собой бесконечную десятичную непериодическую дробь :

e = 2,7182818284590...;

на практике обычно полагают, что e=2,7.

Замечание (не очень серьезное). Ясно, что Л.Н. Толстой никакого отношения к числу e не имеет, тем не менее в записи числа е, обратите внимание, два раза подряд повторяется число 1828 - год рождения Л.Н. Толстого.

График функции у=е х изображен на рис. 235. Это - экспонента, отличающаяся от других экспонент (графиков показательных функций с другими основаниями) тем, что угол между касательной к графику в точке х=0 и осью абсцисс равен 45°.

Свойства функции у = е х:

1)
2) не является ни четной, ни нечетной;
3) возрастает;
4) не ограничена сверху, ограничена снизу;
5) не имеет ни наибольшего, ни наименьшего значений;
6) непрерывна;
7)
8) выпукла вниз;
9) дифференцируема.

Вернитесь к § 45, взгляните на имеющийся там перечень свойств показательной функции у=а х при а > 1. Вы обнаружите те же свойства 1-8 (что вполне естественно), а девятое свойство, связанное с
дифференцируемостью функции, мы тогда не упомянули. Обсудим его теперь.

Выведем формулу для отыскания производной у-ех. При этом мы не будем пользоваться обычным алгоритмом, который выработали в § 32 и который не раз с успехом применяли. В этом алгоритме на заключительном этапе надо вычислить предел, а знания по теории пределов у нас с вами пока весьма и весьма ограниченные. Поэтому будем опираться на геометрические предпосылки, считая, в частности, сам факт существования касательной к графику показательной функции не подлежащим сомнению (поэтому мы так уверенно записали в приведенном выше перечне свойств девятое свойство - дифференцируемость функции у=е х).

1. Отметим, что для функции y = f(х), где f(х) =ех, значение производной в точке х =0 нам уже известно: f / = tg45°=1.

2. Введем в рассмотрение функцию у=g(x), где g(х) -f(х-а), т.е. g(х)-ех" а. На рис. 236 изображен график функции у = g(х): он получен из графика функции у - fх) сдвигом по оси х на |а| единиц масштаба. Касательная к графику функции у=g(х) в точке х-а параллельна касательной к графику функции у = f(х) в точке х -0 (см. рис. 236), значит, она образует с осью х угол 45°. Используя геометрический смысл производной, можем записать, что g(а) =tg45°;=1.

3. Вернемся к функции у = f(х). Имеем:

4. Мы установили, что для любого значения а справедливо соотношение . Вместо буквы а можно, естественно, использовать и букву х; тогда получим

Из этой формулы получается соответствующая формула интегрирования:


А.Г. Мордкович Алгебра 10 класс

Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе скачать

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Готовые работы

ДИПЛОМНЫЕ РАБОТЫ

Многое уже позади и теперь ты - выпускник, если, конечно, вовремя напишешь дипломную работу. Но жизнь - такая штука, что только сейчас тебе становится понятно, что, перестав быть студентом, ты потеряешь все студенческие радости, многие из которых, ты так и не попробовал, всё откладывая и откладывая на потом. И теперь, вместо того, чтобы навёрстывать упущенное, ты корпишь над дипломной работой? Есть отличный выход: скачать нужную тебе дипломную работу с нашего сайта - и у тебя мигом появится масса свободного времени!
Дипломные работы успешно защищены в ведущих Университетах РК.
Стоимость работы от 20 000 тенге

КУРСОВЫЕ РАБОТЫ

Курсовой проект - это первая серьезная практическая работа. Именно с написания курсовой начинается подготовка к разработке дипломных проектов. Если студент научиться правильно излагать содержание темы в курсовом проекте и грамотно его оформлять, то в последующем у него не возникнет проблем ни с написанием отчетов, ни с составлением дипломных работ, ни с выполнением других практических заданий. Чтобы оказать помощь студентам в написании этого типа студенческой работы и разъяснить возникающие по ходу ее составления вопросы, собственно говоря, и был создан данный информационный раздел.
Стоимость работы от 2 500 тенге

МАГИСТЕРСКИЕ ДИССЕРТАЦИИ

В настоящее время в высших учебных заведениях Казахстана и стран СНГ очень распространена ступень высшего профессионального образования, которая следует после бакалавриата - магистратура. В магистратуре обучаются с целью получения диплома магистра, признаваемого в большинстве стран мира больше, чем диплом бакалавра, а также признаётся зарубежными работодателями. Итогом обучения в магистратуре является защита магистерской диссертации.
Мы предоставим Вам актуальный аналитический и текстовый материал, в стоимость включены 2 научные статьи и автореферат.
Стоимость работы от 35 000 тенге

ОТЧЕТЫ ПО ПРАКТИКЕ

После прохождения любого типа студенческой практики (учебной, производственной, преддипломной) требуется составить отчёт. Этот документ будет подтверждением практической работы студента и основой формирования оценки за практику. Обычно, чтобы составить отчёт по практике, требуется собрать и проанализировать информацию о предприятии, рассмотреть структуру и распорядок работы организации, в которой проходится практика, составить календарный план и описать свою практическую деятельность.
Мы поможет написать отчёт о прохождении практики с учетом специфики деятельности конкретного предприятия.

Тема урока: «Дифференцирование показательной и логарифмической функции. Первообразная показательной функции» в заданиях ЕНТ

Цель : развивать у учащихся навыкиприменения теоретических знаний по теме «Дифференцирование показательной и логарифмической функции. Первообразная показательной функции» для решения задач ЕНТ.

Задачи

Образовательные: систематизировать теоретические знания учащихся, закрепить навыки решения задач по данной теме.

Развивающие: развивать память, наблюдательность, логическое мышление, математическую речь учащихся, внимания, навыков самооценки и самоконтроля.

Воспитательные: способствовать:

формированию у учащихся ответственного отношения к учению;

развитию устойчивого интереса к математике;

созданию положительной внутренней мотивации к изучению математики.

Методы обучения : словесный, наглядный, практический.

Формы работы: индивидуальная, фронтальная, в парах.

Ход урока

Эпиграф: « Ум заключается не только в знании, но и в умении применять знания на практике» Аристотель (слайд 2)

I. Организационный момент.

II. Разгадывание кроссворда. (слайд 3-21)

    Французский математик XVII века Пьер Ферма определил эту линию так «Прямая, наиболее тесно прилегающая к кривой в малой окрестности точки».

Касательная

    Функция, которая задается формулой у = log a x.

Логарифмическая

    Функция, которая задается формулой у = а х.

Показательная

    В математике это понятие используется при нахождении скорости движения материальной точки и углового коэффициента касательной к графику функции в заданной точке.

Производная

    Как называется функция F(x) для функции f(x), если выполняется условие F"(x) =f(x) для любой точки из интервала I.

Первообразная

    Как называется зависимость между X и У, при которой каждому элементу Х ставится в соответствие единственный элемент У.

    Производная от перемещения

Скорость

    Функция, которая задается формулой у = е x .

Экспонента

    Если функцию f(x) можно представить в виде f(x)=g(t(x)), то эту функцию называют…

III. Математический диктант.(слайд 22)

1. Записать формулу производной показательной функции. (а х)" = а х ·ln a

2. Записать формулу производной экспоненты. (e х)" = e х

3. Записать формулу производной натурального логарифма. (ln x)"=

4. Записать формулу производной логарифмической функции. (log a x)"=

5. Записать общий вид первообразных для функции f(x) = а х. F(x)=

6. Записать общий вид первообразных для функции f(x) =, x≠0. F(x)=ln|x|+C

Проверить работу (ответы на слайде 23).

IV. Решение задач ЕНТ (тренажер)

А) №1,2,3,6,10,36 на доске и в тетради (слайд 24)

Б) Работа в парах №19,28 (тренажер) (слайд 25-26)

V. 1. Найти ошибки: (слайд 27)

1) f(x)=5 e – 3х, f "(x)= – 3 e – 3х

2) f(x)=17 2х, f "(x)= 17 2х ln17

3) f(x)= log 5 (7x+1), f "(x)=

4) f(x)= ln(9 – 4х), f "(x)=
.

VI. Презентация учащихся.

Эпиграф: «Знание – столь драгоценная вещь, что его не зазорно добывать из любого источника» Фома Аквинский (слайд 28)

VII. Дом.задание №19,20 стр.116

VIII. Тест (резервное задание) (слайд 29-32)

IX. Итог урока.

«Если вы хотите участвовать в большой жизни, то наполняйте свою голову математикой, пока есть к тому возможность. Она окажет вам потом огромную помощь во всей вашей жизни» М.Калинин (слайд 33)


При дифференцировании показательно степенной функции или громоздких дробных выражений удобно пользоваться логарифмической производной. В этой статье мы рассмотрим примеры ее применения с подробными решениями.

Дальнейшее изложение подразумевает умение пользоваться таблицей производных , правилами дифференцирования и знание формулы производной сложной функции .


Вывод формулы логарифмической производной.

Сначала производим логарифмирование по основанию e , упрощаем вид функции, используя свойства логарифма, и далее находим производную неявно заданной функции:

Для примера найдем производную показательно степенной функции x в степени x .

Логарифмирование дает . По свойствам логарифма . Дифференцирование обеих частей равенства приводит к результату:

Ответ: .

Этот же пример можно решить и без использования логарифмической производной. Можно провести некоторые преобразования и перейти от дифференцирования показательно степенной функции к нахождению производной сложной функции:

Пример.

Найти производную функции .

Решение.

В этом примере функция представляет собой дробь и ее производную можно искать с использованием правил дифференцирования. Но в силу громоздкости выражения это потребует множества преобразований. В таких случаях разумнее использовать формулу логарифмической производной . Почему? Вы сейчас поймете.

Найдем сначала . В преобразованиях будем использовать свойства логарифма (логарифм дроби равен разности логарифмов, а логарифм произведения равен сумме логарифмов, и еще степень у выражения под знаком логарифма можно вынести как коэффициент перед логарифмом):

Эти преобразования привели нас к достаточно простому выражению, производная которого легко находится:

Подставляем полученный результат в формулу логарифмической производной и получаем ответ:

Для закрепления материала приведем еще пару примеров без подробных объяснений.


Пример.

Найдите производную показательно степенной функции

 

Возможно, будет полезно почитать: